Insulin analogs with B24 or B25 phenylalanine replaced by biphenylalanine.
نویسندگان
چکیده
B24 and B25 phenylalanines (Phe) play important roles in insulin structure and function. Insulin analogs with B24 Phe or B25 Phe replaced by biphenylalanine (Bip) were prepared by enzymatic semisynthesis. The biological activities were determined by receptor binding assay and in vivo mouse convulsion assay. The results showed that B25 Bip insulin has 139% receptor binding activity and 50% in vivo biological activity, whereas B24 Bip insulin is inactive, when compared with native insulin, suggesting that B24 Phe is crucial for insulin activity. The structures in solution were studied by circular dichroism and fluoremetry, and our results suggested that the insulin analogs with low activities tend to be more tightly packed. The association properties were studied by size exclusion chromatography. The Bip-amide replacement of B24 Phe in deshexapeptide insulin or B25 Phe in despentapeptide insulin will cause the monomeric B24 Phe-amide deshexapeptide insulin or B25 Phe-amide despentapeptide insulin to associate and form dimers, whereas the mutations of B24 Phe in insulin will make insulin dimers dissociate into insulin monomers.
منابع مشابه
A new fluorescent probe for the study of the allosteric properties of D-glyceraldehyde 3-phosphate dehydrogenase.
ion, this displacement is accomodated in the DPI molecule by a corresponding movement of the imidazole ring. As mentioned above, the two phenylalanine residues B24 and B25 are important for the biological activity of insulin. Fig. 9 shows the change in conformation of these two residues in DPI compared with insulin (molecule I). We can see that a large change in conformation occurs at B25, whil...
متن کاملInactive conformation of an insulin despite its wild-type sequence.
The peptide group between residues B24 and B25 of insulin was replaced by an ester bond. This modification only in the backbone was meant to eliminate a structurally important H-bond between the amide proton of B25 and the carbonyl oxygen of A19, and consequently to enhance detachment of the C-terminal B-chain from the body of the molecule, exposing the underlying A-chain. According to a model ...
متن کاملIdentification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution.
Using information gained from (i) the relative HPLC retention of an abnormal insulin present in the serum of a hyperinsulinemic diabetic patient and (ii) the loss of an Mbo II restriction site in one of the patient's insulin gene alleles, it was recently predicted that the mutant insulin contained a serine-for-phenylalanine substitution at position B24 or B25. We have now prepared human [SerB24...
متن کاملImportance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions.
By use of isolated canine hepatocytes and insulin analogs prepared by trypsin-catalyzed semisynthesis, we have investigated the importance of the aromatic triplet PheB24-PheB25-TyrB26 of the COOH-terminal B-chain domain of insulin in directing the affinity of insulin-receptor interactions. Analysis of the receptor binding potencies of analogs bearing transpositions or replacements (by Tyr, D-Ty...
متن کاملProtective hinge in insulin opens to enable its receptor engagement.
Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 40 2 شماره
صفحات -
تاریخ انتشار 2008